Real-Time Epileptic Seizure Detection on Intra-cranial Rat Data Using Reservoir Computing
نویسندگان
چکیده
In this paper it is shown that Reservoir Computing can be successfully applied to perform real-time detection of epileptic seizures in Electroencephalograms (EEGs). Absence and tonic-clonic seizures are detected on intracranial EEG coming from rats. This resulted in an area under the Receiver Operating Characteristics (ROC) curve of about 0.99 on the data that was used. For absences an average detection delay of 0.3s was noted, for tonic-clonic seizures this was 1.5s. Since it was possible to process 15h of data on an average computer in 14.5 minutes all conditions are met for a fast and reliable real-time detection system.
منابع مشابه
Real-time detection of epileptic seizures in animal models using reservoir computing.
In recent years, an increasing number of studies have investigated the effects of closed-loop anti-epileptic treatments. Most of the current research still is very labour intensive: real-time treatment is manually triggered and conclusions can only be drawn after multiple days of manual review and annotation of the electroencephalogram (EEG). In this paper we propose a technique based on reserv...
متن کاملEpileptic seizure detection using Reservoir Computing
In this paper it is shown that Reservoir Computing can be successfully applied to perform real-time detection of epileptic seizures in Electroencephalograms (EEGs). Absence and tonic-clonic seizures are detected on intracranial EEG coming from rats. This resulted in an area under the Receiver Operating Characteristics (ROC) curve of more than 0.99 on the data that was used. For absences an aver...
متن کاملAutomatic detection of epileptic seizures on the intra-cranial electroencephalogram of rats using reservoir computing
INTRODUCTION In this paper we propose a technique based on reservoir computing (RC) to mark epileptic seizures on the intra-cranial electroencephalogram (EEG) of rats. RC is a recurrent neural networks training technique which has been shown to possess good generalization properties with limited training. MATERIALS The system is evaluated on data containing two different seizure types: absenc...
متن کاملDevelopment of an Epileptic Seizure Detection Application based on Parallel Computing
Epileptic seizure detection in a large database of Electroencephalography (EEG) signals needs to be a time constrained process for real-time analysis. Epileptic seizure detection algorithms are designed to obtain and analyze a group of neural signals and recognize the presence of seizure occurrence. The computational cost of the algorithms should be minimized to reduce the processing time and m...
متن کاملDesigning Patient-Specific Seizure Detectors From Multiple Frequency Bands of Intra-cranial EEG Using Support Vector Machines
Automatic seizure detection is becoming popular in modern epilepsy monitoring units since it assists diagnostic monitoring and reduces manual review of large volumes of EEG recordings. In this paper, we describe the application of machine learning algorithms for building patient-specific seizure detectors on multiple frequency bands of intra-cranial electroencephalogram (iEEG) recorded by a den...
متن کامل